Files
Uniper_PLC/PLC/POUs/Sunspec/FB_PowerSupplyKaco.TcPOU
Matthias Heisig 1677d34d9c Added Kaco inverter for sensor ripple testing
- Iso error in string will now only be active if the dc circuit breaker is not closed
- Added some delay between closing dc circuit breaker and enabling inverter so that the dc bus voltage can stabilize itself
2025-05-08 10:07:16 +02:00

1124 lines
29 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<TcPlcObject Version="1.1.0.1" ProductVersion="3.1.4026.12">
<POU Name="FB_PowerSupplyKaco" Id="{43c28077-20d6-4076-bde1-bc92c785654f}" SpecialFunc="None">
<Declaration><![CDATA[FUNCTION_BLOCK FB_PowerSupplyKaco
VAR_INPUT
sInverterIPAddr : STRING;
xEnable : BOOL;
rPower : REAL;
xReset : BOOL;
rMaxBattPower : REAL := 40_000; // 24kW
// Discharge min DC voltage (V)
uiMinDisVoltage : UINT := 6000;
// Charge max voltage (V)
uiMaxChaVoltage : UINT := 9600;
// Discharge max current (A)
uiMaxDisCurrent : UINT := 300;
// Charge max current (A)
uiMaxChaCurrent : UINT := 300;
END_VAR
VAR_OUTPUT
// Inverter active
xActive : BOOL;
// FB error
xError : BOOL;
// Heartbeat ok signal
xHeartbeatOk : BOOL := TRUE;
// Current inverter values
stCurrentValues : ST_SUNSPEC_CURRENT_VALUES;
END_VAR
VAR
// Current state
_iState : INT := 0;
// State for startup state machine
_iStateStartup : INT := 0;
// Startup busy flag
_xStartupBusy : BOOL;
// Internal power command
_rPowerInternal : REAL := 0;
// Value for commanding the target state of the inverter
_uiPCSSetOperation : UINT;
// FB for reading Modbus holding registers
_fbReadRegister : FB_MBReadRegs;
// FB for writing Modbus holding registers
_fbWriteRegister : FB_MBWriteRegs;
// Time for polling for current dc values and check for inverter error
_timPollingDelay : TIME := T#500MS;
// Time for setting the current power
_timSetPowerDelay : TIME := T#250MS;
// Timer for polling of current values
_tonPollingTimer : TON;
// Timer for setting the inverter power
_tonSetPowerTimer : TON;
// Inverter alarm
_fbErrorInverterAlarm : FB_TcAlarm;
// Flag if battery limits have been set
_xBatteryLimitsSet : BOOL := FALSE;
// Flag to start setting the battery limits
_xSetBatteryLimits : BOOL := FALSE;
// Flag to see if an error occured during setting the battery limits
_xErrorSetBatteryLimits : BOOL := FALSE;
// Battery limit scaling factors
_arBattScalingFactors : ARRAY[0..1] OF INT;
// Helper variable for writing a 1 to a register
_uiEnableLimit : UINT := 1;
// Retry timer to set battery limits
_fbTONSetBatteryLimits : TON := (PT := T#1S);
// Inverter power output
_iWSetPct : INT := 0;
// Converter max power scaling factor
_iWMaxSF : INT;
// Scaled converter max power
_rWMax : REAL;
// Unscaled converter max power
_uiWMax : UINT;
// Current DC values (DCA, DCA_SF, DCV, DCV_SF, DCW, DCW_SF) in word array for efficient modbus reading
_awCurrentDCValues : ARRAY[0..5] OF WORD;
// Current AC values (W, W_SF, Hz, Hz_SF, VA, VA_SF, VAr, VAr_SF, PF, PF_SF) in word array for efficient modbus reading
_awCurrentACValues : ARRAY[0..21] OF WORD;
// Current state of the inverters internal statemachine
_uiInverterState : UINT;
// Inverter name for alarm message
_sName : STRING;
END_VAR
VAR CONSTANT
// Battery limits registers (Model 64202)
BATTERY_LIMIT_SF : WORD := 41120;
DIS_MIN_V : WORD := 41122;
CHA_MAX_V : WORD := 41125;
CHA_MAX_A : WORD := 41126;
DIS_MAX_A : WORD := 41123;
EN_LIMIT : WORD := 41129;
// Power registers (Model 64201)
W_SET_PCT : WORD := 41069;
// Basic settings registers (Model 121)
W_MAX : WORD := 40214;
W_MAX_SF : WORD := 40234;
// Start of register with the current dc values
// Size 4
DC_VALUES_START_REGISTER : WORD := 40097;
// Start of register with the current ac values
// SIZE 10
AC_VALUES_START_REGISTER : WORD := 40072;
// Inverter statemachine status register
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
STATUS_REGISTER : WORD := 40108;
// Control register to set the target state of the inverters state machine
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
PCS_SET_OPERATION_REGISTER : WORD := 41064;
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[_rPowerInternal := rPower;
// Clamp rPower to maximum allowed power
IF (rPower > rMaxBattPower) THEN
_rPowerInternal := rMaxBattPower;
END_IF
IF (rPower < -rMaxBattPower) THEN
_rPowerInternal := -rMaxBattPower;
END_IF
CASE _iState OF
0: // Pre-init phase (no battery limits set)
_fbTONSetBatteryLimits(IN := TRUE);
IF _fbTONSetBatteryLimits.Q THEN
_fbTONSetBatteryLimits(IN := FALSE);
_iState := 10;
END_IF
10: // Read scaling factors
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 2,
nMBAddr:= BATTERY_LIMIT_SF,
cbLength:= SIZEOF(_arBattScalingFactors),
pDestAddr:= ADR(_arBattScalingFactors),
bExecute:= TRUE,
tTimeout:= T#30S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
IF (NOT _fbReadRegister.bError) THEN
_iState := 20;
ELSE
// Goto error state
_iState := 0;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
20: // Set min voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MIN_V,
cbLength:= SIZEOF(uiMinDisVoltage),
pSrcAddr:= ADR(uiMinDisVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 30;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
30: // Set max voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_V,
cbLength:= SIZEOF(uiMaxChaVoltage),
pSrcAddr:= ADR(uiMaxChaVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 40;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
40: // Set charge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_A,
cbLength:= SIZEOF(uiMaxChaCurrent),
pSrcAddr:= ADR(uiMaxChaCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 50;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
50: // Set discharge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MAX_A,
cbLength:= SIZEOF(uiMaxDisCurrent),
pSrcAddr:= ADR(uiMaxDisCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 60;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
60: // Enable battery limits
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= EN_LIMIT,
cbLength:= SIZEOF(_uiEnableLimit),
pSrcAddr:= ADR(_uiEnableLimit),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
// Battery limits set
_xBatteryLimitsSet := TRUE;
_xStartupBusy := FALSE;
_iState := 70;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
70: // Try to set battery limits
_rPowerInternal := 0;
_iWSetPct := 0;
_iState := 80;
80: // Battery limits are set, write zero power
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_SET_PCT,
cbLength:= SIZEOF(_iWSetPct),
pSrcAddr:= ADR(_iWSetPct),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
IF NOT _fbWriteRegister.bBusy THEN
IF (NOT _fbWriteRegister.bError) THEN
_iState := 90;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
90: // Read max power scaling
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_SF,
cbLength:= SIZEOF(_iWMaxSF),
pDestAddr:= ADR(_iWMaxSF),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 100;
// Check for valid value
IF (_iWMaxSF < -10) OR (_iWMaxSF > 10) OR (_iWMaxSF = 16#8000) THEN
ADSLOGSTR(msgCtrlMask := ADSLOG_MSGTYPE_HINT, msgFmtStr := 'FBInverter into error state from: %s', strArg := TO_STRING(_iState));
// Goto error state
_iState := 1000;
END_IF
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
100: // Read max power
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX,
cbLength:= SIZEOF(_uiWMax),
pDestAddr:= ADR(_uiWMax),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 110;
// Calculate WMax
// Reading a register with scaling factor = value * 10^SF
_rWMax := LREAL_TO_REAL(_uiWMax * EXPT(10,_iWMaxSF));
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
110: // Idle state, wait for enable
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
_iState := 120;
END_IF
// If enable and INTLK Ok
IF xEnable THEN
// _iState := 130;
_iState := 130;
_rPowerInternal := 0.0;
_iWSetPct := 0;
_uiPCSSetOperation := 11;
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
ELSE
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
_rPowerInternal := 0.0;
_iWSetPct := 0;
END_IF
120: // Write current power demand
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_SET_PCT,
cbLength:= SIZEOF(_iWSetPct),
pSrcAddr:= ADR(_iWSetPct),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
IF NOT _fbWriteRegister.bBusy THEN
IF (NOT _fbWriteRegister.bError) THEN
_iState := 121;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
121: // Read current dc values
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 6,
nMBAddr:= DC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentDCValues),
pDestAddr:= ADR(_awCurrentDCValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 122;
stCurrentValues.rActDCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[1])));
stCurrentValues.rActDCVoltage := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentDCValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[3])));
stCurrentValues.rActDCPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[5])));
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
122: // Read current ac values
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 22,
nMBAddr:= AC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentACValues),
pDestAddr:= ADR(_awCurrentACValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 123;
stCurrentValues.rActACCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseACurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[1]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseBCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[3]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActACPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[12]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[13])));
stCurrentValues.rActACFreq := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentACValues[14]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[15])));
stCurrentValues.rActApparentPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[16]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[17])));
stCurrentValues.rActReactivePower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[18]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[19])));
stCurrentValues.rActPowerFactor := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[20]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[21])));
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
123: // Read current status
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
IF (NOT _fbReadRegister.bError) THEN
// IF (NOT xEnable) THEN
// _iState := 110;
// ELSE
// _iState := 140;
// END_IF
_iState := 124;
ELSE
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
124: // Reset if in error state and not enabled
// Inverter in error state
IF (_uiInverterState = 7) THEN
// Inverter not enabled, so try a reset
IF (NOT xEnable) THEN
_uiPCSSetOperation := 1;
_iState := 125;
ELSE
// Else go to error state
_iState := 1000;
END_IF
ELSE
// No error and not enabled
IF (NOT xEnable) THEN
// Goto polling state
_iState := 110;
ELSE
// No error and enabled, goto enabled polling state
_iState := 140;
END_IF
END_IF
125: // Send off/reset command
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 110;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
130: // Go to started
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 133;
ELSE
_uiPCSSetOperation := 1;
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
131: // Wait for inverter to be online and in state Grid Connected(11)
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the state is Grid Connected(11) then continue
IF NOT _fbReadRegister.bError AND _uiInverterState = 8 THEN
_uiInverterState := 11;
_iState := 133;
END_IF
// If the inverter is not ready wait some time before polling again
IF NOT _fbReadRegister.bError AND _uiInverterState <> 8 THEN
_iState := 132;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
// If not enable, go back to idle
IF (NOT xEnable) THEN
_fbReadRegister(bExecute := FALSE);
_iState := 110;
END_IF
132: // Delay polling inverter ready
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
_iState := 131;
END_IF
// If not enable, go back to idle
IF (NOT xEnable) THEN
_tonPollingTimer(IN := FALSE);
_iState := 110;
END_IF
133: // Standby mode to grid connect
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the state is Grid Connected(11) then continue
IF NOT _fbReadRegister.bError AND _uiInverterState = 4 THEN
//_uiPCSSetOperation := 11;
xActive := TRUE;
_iState := 140;
END_IF
// If the inverter is not ready wait some time before polling again
IF NOT _fbReadRegister.bError AND _uiInverterState <> 4 THEN
_iState := 134;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
// If not enable, go back to idle
// IF (NOT xEnable) THEN
// _fbReadRegister(bExecute := FALSE);
// _iState := 110;
// END_IF
134: // Polling timer delay
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
_iState := 133;
END_IF
// If not enable, go back to idle
IF (NOT xEnable) THEN
_tonPollingTimer(IN := FALSE);
_iState := 110;
END_IF
140: // Enabled
_tonPollingTimer(IN := TRUE);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
// Calculate power to write to register
_iWSetPct := LREAL_TO_INT((_rPowerInternal*100)/(_rWMax * EXPT(10,-2)));
_iState := 120;
END_IF
// If enable and INTLK Ok
IF (NOT xEnable) THEN
_rPowerInternal := 0.0;
_iWSetPct := 0;
_uiPCSSetOperation := 1;
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
_iState := 150;
END_IF
150: // Send shutdown power command
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_SET_PCT,
cbLength:= SIZEOF(_iWSetPct),
pSrcAddr:= ADR(_iWSetPct),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
IF NOT _fbWriteRegister.bBusy THEN
IF (NOT _fbWriteRegister.bError) THEN
_iState := 151;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
151: // Goto off state
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
xActive := FALSE;
_iState := 110;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
1000: // Error state
xActive := FALSE;
xError := TRUE;
_iState := 1001;
1001: // Error state, wait for reset
IF xReset AND (NOT xEnable) THEN
_uiPCSSetOperation := 1;
xError := FALSE;
_iState := 1002;
END_IF
1002: // Try to clear all error by going into off state
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
xActive := FALSE;
_iState := 110;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
END_CASE
// Calculate power to write to register
// (could not find where the scaling for wset can be read but its -2!)
// => 10% = 1000
// Writing a register with scaling factor = value / (10^SF)
//_iWSetPct := LREAL_TO_INT((_rPowerInternal*100)/(_rWMax * EXPT(10,-2)));]]></ST>
</Implementation>
<Method Name="FB_Init" Id="{5f7291f3-1517-49b9-b6a8-07debcc66730}">
<Declaration><![CDATA[//FB_Init ist immer implizit verfügbar und wird primär für die Initialisierung verwendet.
//Der Rückgabewert wird nicht ausgewertet. Für gezielte Einflussnahme können Sie
//die Methoden explizit deklarieren und darin mit dem Standard-Initialisierungscode
//zusätzlichen Code bereitstellen. Sie können den Rückgabewert auswerten.
METHOD FB_Init: BOOL
VAR_INPUT
bInitRetains: BOOL; // TRUE: Die Retain-Variablen werden initialisiert (Reset warm / Reset kalt)
bInCopyCode: BOOL; // TRUE: Die Instanz wird danach in den Kopiercode kopiert (Online-Change)
sName : STRING;
END_VAR]]></Declaration>
<Implementation>
<ST><![CDATA[_sName := sName;
// Create inverter main alarm
_fbErrorInverterAlarm.CreateEx(stEventEntry := TC_EVENTS.Inverter.InverterError, bWithConfirmation := TRUE, 0);
_fbErrorInverterAlarm.ipArguments.Clear().AddString(_sName);]]></ST>
</Implementation>
</Method>
<Property Name="Name" Id="{1af22804-e4c4-4295-b5b9-5968e747d45b}">
<Declaration><![CDATA[PROPERTY Name : STRING]]></Declaration>
<Get Name="Get" Id="{6338c761-e06b-4a94-a0d3-0502e3ee997d}">
<Declaration><![CDATA[VAR
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[Name := _sName;]]></ST>
</Implementation>
</Get>
<Set Name="Set" Id="{eebb6389-e8f3-42a9-a08a-6e1cad8f0192}">
<Declaration><![CDATA[VAR
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[_sName := Name;
_fbErrorInverterAlarm.ipArguments.Clear().AddString(_sName);]]></ST>
</Implementation>
</Set>
</Property>
<Action Name="SetBatteryLimits" Id="{15c86a66-2f5b-42ab-82c5-3aeebcab0e43}">
<Implementation>
<ST><![CDATA[CASE _iStateStartup OF
0: // Start
IF _xSetBatteryLimits THEN
_xSetBatteryLimits := FALSE;
_xBatteryLimitsSet := FALSE;
_xErrorSetBatteryLimits := FALSE;
_xStartupBusy := TRUE;
_iStateStartup := 10;
END_IF
10: // Read scaling factors
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 2,
nMBAddr:= BATTERY_LIMIT_SF,
cbLength:= SIZEOF(_arBattScalingFactors),
pDestAddr:= ADR(_arBattScalingFactors),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
IF (NOT _fbReadRegister.bError) THEN
_iState := 20;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
20: // Set min voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MIN_V,
cbLength:= SIZEOF(uiMinDisVoltage),
pSrcAddr:= ADR(uiMinDisVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 30;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
30: // Set max voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_V,
cbLength:= SIZEOF(uiMaxChaVoltage),
pSrcAddr:= ADR(uiMaxChaVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 40;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
40: // Set charge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_A,
cbLength:= SIZEOF(uiMaxChaCurrent),
pSrcAddr:= ADR(uiMaxChaCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 50;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
50: // Set discharge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MAX_A,
cbLength:= SIZEOF(uiMaxDisCurrent),
pSrcAddr:= ADR(uiMaxDisCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iState := 60;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
60: // Enable battery limits
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= EN_LIMIT,
cbLength:= SIZEOF(_uiEnableLimit),
pSrcAddr:= ADR(_uiEnableLimit),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
// Battery limits set
_xBatteryLimitsSet := TRUE;
_xStartupBusy := FALSE;
_iState := 0;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
1000: // Error state
_iStateStartup := 0;
_xErrorSetBatteryLimits := TRUE;
_xBatteryLimitsSet := FALSE;
_xStartupBusy := FALSE;
END_CASE]]></ST>
</Implementation>
</Action>
</POU>
</TcPlcObject>