Files
Uniper_PLC/PLC/POUs/Sunspec/FB_PowerSupplySunspec.TcPOU
Matthias Heisig 327f324be8 Implemented fixes and improvements during comissioning
- New Balancing mode
- HMI Interface for Inverterdata implemented
- Adjusted GVL_CONFIG values
- Read inverter data even when inverter is off
- Added OPC UA settings to inverter data hmi interface
- Added multisettings to safety project for strings
2024-05-06 11:05:33 +02:00

1181 lines
34 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<TcPlcObject Version="1.1.0.1" ProductVersion="3.1.4024.12">
<POU Name="FB_PowerSupplySunspec" Id="{a826dd09-442c-45c5-8ae3-9b71f293003c}" SpecialFunc="None">
<Declaration><![CDATA[FUNCTION_BLOCK FB_PowerSupplySunspec
VAR_INPUT
sInverterIPAddr : STRING;
xEnable : BOOL;
rPower : REAL;
rReactivePower : REAL := 0.0;
xReset : BOOL;
rMaxBattPower : REAL := 24_000; // 24kW
END_VAR
VAR_OUTPUT
// Output for SCS DC-Relais
//xCloseDCRelais AT %Q*: BOOL;
// Inverter active
xActive : BOOL;
// FB error
xError : BOOL;
// Current inverter values
stCurrentValues : ST_SUNSPEC_CURRENT_VALUES;
END_VAR
VAR
// Current state
_iState : INT := 0;
// FB for reading Modbus holding registers
_fbReadRegister : FB_MBReadRegs;
// FB for writing Modbus holding registers
_fbWriteRegister : FB_MBWriteRegs;
// Timer for checking if the inverter started in a reasonable amount of time
_tonInverterStartup : TON;
// converter max power scaling factor
_iWMaxSF : INT;
// Unscaled converter max power
_iWMax : UINT;
// Scaled converter max power
_rWMax : REAL;
// Unscaled limit for converter power
_iWMaxLimPct : INT;
// Scaling factor for reactive power percent value
_iVarPctSF : INT;
// Reread set power limit
_iWMaxLimPctRead : INT;
_iWMaxLimPctReadScaled : REAL;
// Scaling factor for power limiting
_iWMaxLimPctSF : INT;
// Unscaled maximum power from type label
_iWRTGSF : INT;
// Scaling for maximum power from type label
_rWRTGScaling : REAL;
// Current state of the inverters internal statemachine
_uiInverterState : UINT;
// Last written power to the inverter
_rOldPower : REAL;
// Value to enable or dissable the Power limiting feature
_uiMaxLimEn : UINT;
// Value for commanding the target state of the inverter
_uiPCSSetOperation : UINT;
// Maximum reactive power
_iMaxPowerVar : INT := 0;
// Enable max reactive power percent controller
_iMaxVarPct : INt := 1;
// Holds the state number in which an error occured
_iErrorInState : INT;
// Time for polling for current dc values and check for inverter error
_timPollingDelay : TIME := T#500MS;
// Timer for polling of current values
_tonPollingTimer : TON;
// Current DC values (DCA, DCA_SF, DCV, DCV_SF, DCW, DCW_SF) in word array for efficient modbus reading
_awCurrentDCValues : ARRAY[0..5] OF WORD;
// Current AC values (W, W_SF, Hz, Hz_SF, VA, VA_SF, VAr, VAr_SF, PF, PF_SF) in word array for efficient modbus reading
_awCurrentACValues : ARRAY[0..9] OF WORD;
// Inverter error bits
_dwErrorBits : DWORD;
// Inverter reset errors command
_uiResetInverter : UINT := 1;
// Inverter alarm
_fbErrorInverterAlarm : Fb_TcAlarm;
_sName : STRING;
END_VAR
VAR CONSTANT
// Inverter statemachine status register
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
STATUS_REGISTER : WORD := 40108;
// Throttled power register
// Size 1, int16 (Range = -32767 .. 32767, Not implemented 0x8000)
W_MAX_LIM_PCT_REGISTER : WORD := 40187;
// Throttled power register scaling factor
// Size 1, sunssf (int16) (Range = -10 .. 10, Not implemented 0x8000)
W_MAX_LIM_PCT_SF_REGISTER : WORD := 40205;
// Control register to enable and dissable if the power throttleing should be active
// Size1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
W_MAX_LIM_EN_REGISTER : WORD := 40191;
// Register to reset latched alarms in the inverter
// Size 1, uint16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
PCS_ALARM_RESET_REGISTER : WORD := 40230;
// Control register to set the target state of the inverters state machine
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
PCS_SET_OPERATION_REGISTER : WORD := 40231;
// Maximum inverter output power
// Size 1, uint16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
W_MAX_REGISTER : WORD := 40152;
// Maximum inverter output power scaling factor
// Size 1, sunssf (int16) (Range = -10 .. 10, Not implemented 0x8000)
W_MAX_SF_REGISTER : WORD := 40172;
// Maximum inverter output power from type label
// Size 1, uint16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
W_RTG_REGISTER : WORD := 40125;
// Maximum inverter output power from type label scaling factor
// Size 1, sunssf (int16) (Range = -10 .. 10, Not implemented 0x8000)
W_RTG_SF_REGISTER : WORD := 40126;
// Start of register with the current dc values
// Size 4
DC_VALUES_START_REGISTER : WORD := 40097;
// Start of register with the current ac values
// SIZE 10
AC_VALUES_START_REGISTER : WORD := 40084;
// Power factor register in cosine of angle
// Size 1, int16 (Range = -32767 .. 32767, Not implemented 0x8000)
//OUT_PF_SET : WORD := 40192;
// Enable power factor controller
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
//OUT_PF_SET_ENA : WORD := 40196;
// Reactive power in percent of W_Max
// Size 1, int16 (Range = -32767 .. 32767, Not implemented 0x8000)
VAR_W_MAX_PCT : WORD := 40197;
// Enable percent limited var controller
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
VAR_PCT_ENA : WORD := 40204;
// Register for reactive power percent scaling factor
// Size 1, sunssf (int16) (Range = -10 .. 10, Not implemented 0x8000)
VAR_PCT_SF : WORD := 40207;
// Error bits register
// Size 2
EVT_1_REGISTER : WORD := 40110;
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[// Clamp rPower to maximum allowed power
IF (rPower > rMaxBattPower) THEN
rPower := rMaxBattPower;
END_IF
IF (rPower < -rMaxBattPower) THEN
rPower := -rMaxBattPower;
END_IF
// State machine
CASE _iState OF
0: // Off
// If enable and INTLK Ok
IF xEnable THEN
_iState := 10;
//xCloseDCRelais := TRUE;
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
ELSE
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
END_IF
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE, PT := _timPollingDelay);
_iState := 1;
END_IF
1: // Read inverter status
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
IF NOT _fbReadRegister.bError THEN
_iState := 2;
ELSE
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
2: // IF inverter is not in STANDYB(8) STATE, send command to shutdown inverter
IF (_uiInverterState = 8) OR (_uiInverterState = 1) THEN
_iState := 3;
ELSE
_uiPCSSetOperation := 3;
_iState := 200;
END_IF
3: // Read current DC values
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 6,
nMBAddr:= DC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentDCValues),
pDestAddr:= ADR(_awCurrentDCValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 4;
stCurrentValues.rActDCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[1])));
stCurrentValues.rActDCVoltage := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentDCValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[3])));
stCurrentValues.rActDCPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[5])));
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
4: // Read current ac values
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 10,
nMBAddr:= AC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentACValues),
pDestAddr:= ADR(_awCurrentACValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
// Go back to polling state
_iState := 0;
stCurrentValues.rActACPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[1])));
stCurrentValues.rActACFreq := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentACValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[3])));
stCurrentValues.rActApparentPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[5])));
stCurrentValues.rActReactivePower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[6]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[7])));
stCurrentValues.rActPowerFactor := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[8]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[9])));
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
10: // Wait for inverter to be online and in state STANDBY(8)
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the state is STANDBY(8) then continue
IF NOT _fbReadRegister.bError AND _uiInverterState = 8 THEN
_iState := 20;
END_IF
// If the inverter is not ready wait some time before polling again
IF NOT _fbReadRegister.bError AND _uiInverterState <> 8 THEN
_iState := 15;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
// If not enable, go back to idle
IF NOT xEnable THEN
_fbReadRegister(bExecute := FALSE);
_iState := 0;
END_IF
15: // Delay polling inverter ready
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
_iState := 10;
END_IF
// If not enable, go back to idle
IF NOT xEnable THEN
_tonPollingTimer(IN := FALSE);
_iState := 0;
END_IF
20: // Read inverter max power scaling
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_SF_REGISTER,
cbLength:= SIZEOF(_iWMaxSF),
pDestAddr:= ADR(_iWMaxSF),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 25;
// Check for valid value
IF (_iWMaxSF < -10) OR (_iWMaxSF > 10) OR (_iWMaxSF = 16#8000) THEN
// Goto error state
_iState := 1000;
END_IF
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
25: // Read inverter Max power limit scaling
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_LIM_PCT_SF_REGISTER,
cbLength:= SIZEOF(_iWMaxLimPctSF),
pDestAddr:= ADR(_iWMaxLimPctSF),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 30;
// Check for valid value
IF (_iWMaxLimPctSF < -10) OR (_iWMaxLimPctSF > 10) OR (_iWMaxLimPctSF = 16#8000) THEN
// Goto error state
_iState := 1000;
END_IF
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
26: // Read inverter scaling factor for reactive power
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= VAR_PCT_SF,
cbLength:= SIZEOF(_iVarPctSF),
pDestAddr:= ADR(_iVarPctSF),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 30;
// Check for valid value
IF (_iVarPctSF < -10) OR (_iVarPctSF > 10) OR (_iVarPctSF = 16#8000) THEN
// Goto error state
_iState := 1000;
END_IF
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
30: // Read inverter max power
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_REGISTER,
cbLength:= SIZEOF(_iWMax),
pDestAddr:= ADR(_iWMax),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegister.bError THEN
_iState := 40;
// Reading a register with scaling factor = value * 10^SF
_rWMax := LREAL_TO_REAL(_iWMax * EXPT(10,_iWMaxSF));
// Calculate power to write to register
_iWMaxLimPct := LREAL_TO_INT((rPower*100)/(_rWMax * EXPT(10,_iWMaxLimPctSF)));
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
40: // Set power limit
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_LIM_PCT_REGISTER,
cbLength:= SIZEOF(_iWMaxLimPct),
pSrcAddr:= ADR(_iWMaxLimPct),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 50;
_rOldPower := rPower;
_uiMaxLimEn := 1;
// Calculate reactive power setting
//_iMaxPowerVar := LREAL_TO_INT((rReactivePower*100)/(_iMaxPowerVar * EXPT(10,_iVarPctSF)));
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
41: // Set max reactive power in percent
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= VAR_W_MAX_PCT,
cbLength:= SIZEOF(_iMaxPowerVar),
pSrcAddr:= ADR(_iMaxPowerVar),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 42;
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
42: // Enable reactive power percent limiting
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= VAR_PCT_ENA,
cbLength:= SIZEOF(_iMaxVarPct),
pSrcAddr:= ADR(_iMaxVarPct),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 50;
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
// 45: // Read set power
// _fbReadRegister(
// sIPAddr:= sInverterIPAddr,
// nTCPPort:= 502,
// nUnitID:= 16#FF, // 16#FF for Modbus TCP
// nQuantity:= 1,
// nMBAddr:= W_MAX_LIM_PCT_REGISTER,
// cbLength:= SIZEOF(_iWMaxLimPctRead),
// pDestAddr:= ADR(_iWMaxLimPctRead),
// bExecute:= TRUE,
// tTimeout:= T#5S,
// bBusy=> ,
// bError=> ,
// nErrId=> ,
// cbRead=> );
// // Check if reading mudbus register is done
// IF NOT _fbReadRegister.bBusy THEN
// IF NOT _fbReadRegister.bError THEN
// _iWMaxLimPctReadScaled := LREAL_TO_INT(_rWMax * _iWMaxLimPctRead * EXPT(10,_iWMaxLimPctSF)*0.01);
// _iState := 50;
// END_IF
// _fbReadRegister(bExecute := FALSE);
// END_IF
50: // Enable Power limiting (THROTTLED)
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_LIM_EN_REGISTER,
cbLength:= SIZEOF(_uiMaxLimEn),
pSrcAddr:= ADR(_uiMaxLimEn),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 51;
_uiPCSSetOperation := 4;
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
51: // Go to started
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_uiPCSSetOperation := 1;
_iState := 60;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
60: // Switch to THROTTLED mode
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 65;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
65: // Wait for polling timer
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
_iState := 70;
ELSIF ABS(rPower - _rOldPower) > 0.1 THEN
_tonPollingTimer(IN := FALSE);
// If power has ben changed, goto set power limit mode
_iState := 40;
// Calculate power to write to register
_iWMaxLimPct := LREAL_TO_INT((rPower*100)/(_rWMax * EXPT(10,_iWMaxLimPctSF)));
END_IF
// check if inverter should shut down
IF NOT xEnable THEN
_uiPCSSetOperation := 3;
// Goto shutdown sequence
_iState := 200;
END_IF
70: // Enabled, check for error
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError AND (_uiInverterState <> 7) THEN
_iState := 80;
IF (_uiInverterState = 4) OR (_uiInverterState = 5) THEN
xActive := TRUE;
ELSE
xActive := FALSE;
END_IF
ELSE
xError := TRUE;
_uiPCSSetOperation := 3;
// Read error register
_iState := 200;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
80: // Read current DC values
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 6,
nMBAddr:= DC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentDCValues),
pDestAddr:= ADR(_awCurrentDCValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 85;
stCurrentValues.rActDCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[1])));
stCurrentValues.rActDCVoltage := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[3])));
stCurrentValues.rActDCPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[5])));
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
85: // Read current ac values
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 10,
nMBAddr:= AC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentACValues),
pDestAddr:= ADR(_awCurrentACValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
// Go back to polling state
_iState := 90;
stCurrentValues.rActACPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[1])));
stCurrentValues.rActACFreq := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentACValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[3])));
stCurrentValues.rActApparentPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[5])));
stCurrentValues.rActReactivePower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[6]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[7])));
stCurrentValues.rActPowerFactor := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[8]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[9])));
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
90: // Read current inverter status
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
IF NOT _fbReadRegister.bError THEN
_iState := 65;
stCurrentValues.uiStatus := _uiInverterState;
ELSE
// Read error register
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
200: // Shutdown sequence
_iErrorInState := _iState;
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_SET_OPERATION_REGISTER,
cbLength:= SIZEOF(_uiPCSSetOperation),
pSrcAddr:= ADR(_uiPCSSetOperation),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF NOT _fbWriteRegister.bError THEN
_iState := 210;
ELSE
// Goto error state
_iState := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
210: // Wait for poll timer to
_tonPollingTimer(IN := TRUE, PT := _timPollingDelay);
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
_iState := 220;
END_IF
220: // Poll and wait for standby state
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= STATUS_REGISTER,
cbLength:= SIZEOF(_uiInverterState),
pDestAddr:= ADR(_uiInverterState),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 0;
xActive := FALSE;
//xCloseDCRelais := FALSE;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
990: // Read error register
_iErrorInState := _iState;
_fbReadRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 2,
nMBAddr:= EVT_1_REGISTER,
cbLength:= SIZEOF(_dwErrorBits),
pDestAddr:= ADR(_dwErrorBits),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegister.bBusy THEN
// If there was no error and the converter has no error continue
IF NOT _fbReadRegister.bError THEN
_iState := 1000;
END_IF
_fbReadRegister(bExecute := FALSE);
END_IF
1000: // Error state, wait for reset
IF xReset AND (NOT xEnable) THEN
_iState := 1010;
END_IF
1010: // Try to clear all latched events
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= PCS_ALARM_RESET_REGISTER,
cbLength:= SIZEOF(_uiResetInverter),
pSrcAddr:= ADR(_uiResetInverter),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
IF NOT _fbWriteRegister.bBusy THEN
_iState := 0;
xError := FALSE;
_fbWriteRegister(bExecute := FALSE);
END_IF
END_CASE
IF xError AND (NOT _fbErrorInverterAlarm.bRaised) THEN
_fbErrorInverterAlarm.Raise(0);
END_IF
IF (NOT xError) AND _fbErrorInverterAlarm.bRaised THEN
_fbErrorInverterAlarm.Clear(0, FALSE);
END_IF
IF (_fbErrorInverterAlarm.eConfirmationState = TcEventConfirmationState.WaitForConfirmation) AND xReset THEN
_fbErrorInverterAlarm.Confirm(0);
END_IF]]></ST>
</Implementation>
<Method Name="FB_init" Id="{a80728a8-68c7-4f6a-87fc-246cb88104d4}">
<Declaration><![CDATA[METHOD FB_init : BOOL
VAR_INPUT
bInitRetains : BOOL; // if TRUE, the retain variables are initialized (warm start / cold start)
bInCopyCode : BOOL; // if TRUE, the instance afterwards gets moved into the copy code (online change)
sName : STRING;
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[_sName := sName;
// Create inverter main alarm
_fbErrorInverterAlarm.CreateEx(stEventEntry := TC_EVENTS.Inverter.InverterError, bWithConfirmation := TRUE, 0);
_fbErrorInverterAlarm.ipArguments.Clear().AddString(_sName);]]></ST>
</Implementation>
</Method>
<LineIds Name="FB_PowerSupplySunspec">
<LineId Id="774" Count="10" />
<LineId Id="1550" Count="0" />
<LineId Id="785" Count="4" />
<LineId Id="2615" Count="0" />
<LineId Id="790" Count="0" />
<LineId Id="2614" Count="0" />
<LineId Id="2613" Count="0" />
<LineId Id="2616" Count="1" />
<LineId Id="2906" Count="0" />
<LineId Id="2618" Count="3" />
<LineId Id="2623" Count="15" />
<LineId Id="2622" Count="0" />
<LineId Id="2639" Count="0" />
<LineId Id="2644" Count="0" />
<LineId Id="2641" Count="0" />
<LineId Id="2643" Count="0" />
<LineId Id="2642" Count="0" />
<LineId Id="2721" Count="0" />
<LineId Id="2640" Count="0" />
<LineId Id="2645" Count="1" />
<LineId Id="2648" Count="1" />
<LineId Id="2651" Count="0" />
<LineId Id="2722" Count="0" />
<LineId Id="2652" Count="0" />
<LineId Id="2650" Count="0" />
<LineId Id="2653" Count="0" />
<LineId Id="2656" Count="64" />
<LineId Id="2654" Count="1" />
<LineId Id="2647" Count="0" />
<LineId Id="791" Count="22" />
<LineId Id="1701" Count="5" />
<LineId Id="814" Count="1" />
<LineId Id="1714" Count="0" />
<LineId Id="1719" Count="0" />
<LineId Id="1715" Count="0" />
<LineId Id="1718" Count="0" />
<LineId Id="1716" Count="1" />
<LineId Id="1707" Count="1" />
<LineId Id="1710" Count="2" />
<LineId Id="1709" Count="0" />
<LineId Id="1713" Count="0" />
<LineId Id="1720" Count="0" />
<LineId Id="1722" Count="1" />
<LineId Id="1726" Count="0" />
<LineId Id="1725" Count="0" />
<LineId Id="1721" Count="0" />
<LineId Id="1433" Count="0" />
<LineId Id="816" Count="28" />
<LineId Id="1171" Count="0" />
<LineId Id="845" Count="33" />
<LineId Id="1172" Count="0" />
<LineId Id="879" Count="4" />
<LineId Id="1981" Count="1" />
<LineId Id="1991" Count="0" />
<LineId Id="1993" Count="12" />
<LineId Id="1992" Count="0" />
<LineId Id="2006" Count="0" />
<LineId Id="2008" Count="15" />
<LineId Id="2007" Count="0" />
<LineId Id="1983" Count="0" />
<LineId Id="884" Count="28" />
<LineId Id="1173" Count="0" />
<LineId Id="913" Count="28" />
<LineId Id="2024" Count="1" />
<LineId Id="942" Count="0" />
<LineId Id="1174" Count="0" />
<LineId Id="943" Count="4" />
<LineId Id="1928" Count="3" />
<LineId Id="1934" Count="18" />
<LineId Id="1955" Count="5" />
<LineId Id="1933" Count="0" />
<LineId Id="2030" Count="1" />
<LineId Id="2033" Count="25" />
<LineId Id="2032" Count="0" />
<LineId Id="1932" Count="0" />
<LineId Id="1520" Count="0" />
<LineId Id="1522" Count="17" />
<LineId Id="1541" Count="0" />
<LineId Id="1548" Count="0" />
<LineId Id="1542" Count="2" />
<LineId Id="1521" Count="0" />
<LineId Id="1493" Count="0" />
<LineId Id="948" Count="23" />
<LineId Id="1175" Count="0" />
<LineId Id="972" Count="4" />
<LineId Id="2907" Count="1" />
<LineId Id="2969" Count="18" />
<LineId Id="3031" Count="0" />
<LineId Id="2988" Count="5" />
<LineId Id="2909" Count="0" />
<LineId Id="2996" Count="0" />
<LineId Id="977" Count="37" />
<LineId Id="1560" Count="1" />
<LineId Id="1015" Count="3" />
<LineId Id="1127" Count="0" />
<LineId Id="1019" Count="25" />
<LineId Id="1097" Count="1" />
<LineId Id="1100" Count="1" />
<LineId Id="1099" Count="0" />
<LineId Id="1045" Count="0" />
<LineId Id="1176" Count="0" />
<LineId Id="2723" Count="0" />
<LineId Id="1046" Count="6" />
<LineId Id="1063" Count="20" />
<LineId Id="1090" Count="0" />
<LineId Id="1092" Count="0" />
<LineId Id="1775" Count="0" />
<LineId Id="1084" Count="4" />
<LineId Id="1062" Count="0" />
<LineId Id="1736" Count="1" />
<LineId Id="1739" Count="19" />
<LineId Id="1781" Count="0" />
<LineId Id="1759" Count="2" />
<LineId Id="1774" Count="0" />
<LineId Id="1776" Count="1" />
<LineId Id="1762" Count="4" />
<LineId Id="1738" Count="0" />
<LineId Id="3213" Count="1" />
<LineId Id="3216" Count="15" />
<LineId Id="3215" Count="0" />
<LineId Id="3232" Count="0" />
<LineId Id="3240" Count="0" />
<LineId Id="3234" Count="0" />
<LineId Id="3236" Count="2" />
<LineId Id="3235" Count="0" />
<LineId Id="3239" Count="0" />
<LineId Id="3233" Count="0" />
<LineId Id="1093" Count="1" />
<LineId Id="1102" Count="24" />
<LineId Id="1054" Count="0" />
<LineId Id="1295" Count="4" />
<LineId Id="1128" Count="0" />
<LineId Id="1300" Count="1" />
<LineId Id="1129" Count="0" />
<LineId Id="1132" Count="20" />
<LineId Id="1163" Count="0" />
<LineId Id="1294" Count="0" />
<LineId Id="1161" Count="1" />
<LineId Id="1130" Count="1" />
<LineId Id="1055" Count="0" />
<LineId Id="1177" Count="20" />
<LineId Id="1199" Count="1" />
<LineId Id="1169" Count="0" />
<LineId Id="1265" Count="2" />
<LineId Id="1269" Count="3" />
<LineId Id="1274" Count="11" />
<LineId Id="1273" Count="0" />
<LineId Id="1289" Count="1" />
<LineId Id="1293" Count="0" />
<LineId Id="2235" Count="0" />
<LineId Id="1291" Count="1" />
<LineId Id="12" Count="0" />
<LineId Id="2418" Count="0" />
<LineId Id="2417" Count="0" />
<LineId Id="2419" Count="1" />
<LineId Id="2422" Count="0" />
<LineId Id="2421" Count="0" />
<LineId Id="2423" Count="1" />
<LineId Id="2426" Count="0" />
<LineId Id="2425" Count="0" />
<LineId Id="2427" Count="1" />
</LineIds>
<LineIds Name="FB_PowerSupplySunspec.FB_init">
<LineId Id="15" Count="1" />
<LineId Id="11" Count="0" />
<LineId Id="7" Count="1" />
</LineIds>
</POU>
</TcPlcObject>