Files
Uniper_PLC/PLC/POUs/Sunspec/Kaco/FB_PowerSupplyKaco.TcPOU
Matthias Heisig 9c6e28b83d Added Kaco inverter implementation
- Added Kaco inverter implementation
- Small refactoring
- Added release inverter power signal for simultaneous start of the
  inverters
2025-08-11 23:26:40 +09:00

848 lines
23 KiB
XML

<?xml version="1.0" encoding="utf-8"?>
<TcPlcObject Version="1.1.0.1" ProductVersion="3.1.4026.12">
<POU Name="FB_PowerSupplyKaco" Id="{43c28077-20d6-4076-bde1-bc92c785654f}" SpecialFunc="None">
<Declaration><![CDATA[FUNCTION_BLOCK FB_PowerSupplyKaco
VAR_INPUT
sInverterIPAddr : STRING;
xEnable : BOOL;
xReleasePower : BOOL;
rPower : REAL;
xReset : BOOL;
rMaxBattPower : REAL := 40_000; // 24kW
END_VAR
VAR_OUTPUT
// Inverter active
xActive : BOOL;
// FB error
xError : BOOL;
// Heartbeat ok signal
xHeartbeatOk : BOOL := TRUE;
// Current inverter values
stCurrentValues : ST_SUNSPEC_CURRENT_VALUES;
END_VAR
VAR
// Battery limits
// 0 - Min discharge voltage
// 1 - Max discharge current
// 2 - Discharge cutoff amp -> 0 = off
// 3 - Max charge voltage
// 4 - Max chrage current
// 5 - Charge cutoff amp -> 0 = off
_auiBatteryLimitValues : ARRAY[0..5] OF UINT := [6600, 300, 0, 9600, 300, 0];
// Current state
_iState : INT := 0;
// State for startup state machine
_iStateStartup : INT := 0;
// Startup busy flag
_xStartupBusy : BOOL;
// Internal power command
_rPowerInternal : REAL := 0;
// Enum for requested state
_eRequestedState : (OFF := 1, STANDBY := 8, GRID_PRE_CONNECTED := 10, GRID_CONNECTED := 11) := OFF;
// Watchdog timeout in seconds
_uiWatchdogTimeoutSeconds : UINT := 10;
// FB for reading Modbus holding registers
_fbReadRegisters : FB_MBReadRegs;
// FB for writing Modbus holding registers
_fbWriteRegisters : FB_MBWriteRegs;
// FB for writing heartbeat register
_fbWriteHearbeatRegister : FB_MBWriteSingleReg;
// FB for writing requested state
_fbWriteRequestedState : FB_MBWriteSingleReg;
// FB for writing current power command
// Write multiple registers is used here
// because FB_MBWriteSingleReg expects an
// unsigned data type
_fbWritePowerCommand : FB_MBWriteRegs;
// FB for reading current state
_fbReadCurrentState : FB_MBReadRegs;
// FB for reading pcu state register
_fbReadPCUState : FB_MBReadRegs;
// FB for reading dc values
_fbReadDCValues : FB_MBReadRegs;
// FB for reading ac values
_fbReadACValues : FB_MBReadRegs;
// Time for polling for current dc values and check for inverter error
_timPollingDelay : TIME := T#500MS;
// Time for setting the current power
_timSetPowerDelay : TIME := T#250MS;
// Timer for polling of current values
_tonPollingTimer : TON;
_tTimeoutPolling : TIME := T#5S;
// Timer for setting the inverter power
_tonSetPowerTimer : TON;
// Timer for watchdog
_tonWatchdogResetTimer : TON := (PT := T#1S);
_tTimeoutWriteWatchdogRegister : TIME := T#5S;
// Inverter alarm
_fbErrorInverterAlarm : FB_TcAlarm;
// Flag if battery limits have been set
_xBatteryLimitsSet : BOOL := FALSE;
// Flag to see if an error occured during setting the battery limits
_xErrorSetBatteryLimits : BOOL := FALSE;
// Battery limit scaling factors
_arBattScalingFactors : ARRAY[0..1] OF INT;
// Helper variable for writing a 1 to a register
_uiEnableLimit : UINT := 1;
// Retry timer to set battery limits
_fbTONSetBatteryLimits : TON := (PT := T#5S);
// Inverter power output
_iWSetPct : INT := 0;
// Converter max power scaling factor
_iWMaxSF : INT;
// Scaling factor for power setpoint
_iWSetPctSF : INT := -2;
// Scaled converter max power
_rWMax : REAL;
// Unscaled converter max power
_uiWMax : UINT;
// Current DC values (DCA, DCA_SF, DCV, DCV_SF, DCW, DCW_SF) in word array for efficient modbus reading
_awCurrentDCValues : ARRAY[0..5] OF WORD;
// Current AC values (W, W_SF, Hz, Hz_SF, VA, VA_SF, VAr, VAr_SF, PF, PF_SF) in word array for efficient modbus reading
_awCurrentACValues : ARRAY[0..21] OF WORD;
// Current state
_eCurrentState : E_KACO_CURRENT_STATE;
// Current PCU state and alarm messages
_stPCUState : ST_KACU_PCU;
// Error during cyclic reading
_xErrorCyclicData : BOOL;
// Internal inverter error
_xErrorInverter : BOOL;
// Inverter name for alarm message
_sName : STRING;
END_VAR
VAR CONSTANT
// Battery limits registers (Model 64202)
// 41120 is Voltage and 41121 is amp
BATTERY_LIMIT_SF_START : WORD := 41120;
BATTERY_SET_LIMITS_START : WORD := 41122;
DIS_MIN_V : WORD := 41122;
DIS_MAX_A : WORD := 41123;
CHA_MAX_V : WORD := 41125;
CHA_MAX_A : WORD := 41126;
EN_LIMIT : WORD := 41129;
// Power registers (Model 64201)
W_SET_PCT : WORD := 41069;
// Basic settings registers (Model 121)
W_MAX : WORD := 40214;
W_MAX_SF : WORD := 40234;
// Start of register with the current dc values
// Size 4
DC_VALUES_START_REGISTER : WORD := 40097;
// Start of register with the current ac values
// SIZE 10
AC_VALUES_START_REGISTER : WORD := 40072;
// Inverter statemachine status register
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
PCU_STATUS_START_REGISTER : WORD := 41078;
// Inverter current state
CURRENT_STATE_REGISTER : WORD := 41065;
// Control register to set the target state of the inverters state machine
// Size 1, enum16 (Range = 0 .. 65534, Not implemented = 0xFFFF)
REQUESTED_STATE_REGISTER : WORD := 41064;
// Hearbeat register
WATCHDOG_REGISTER : WORD := 41068;
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[_rPowerInternal := rPower;
// Clamp rPower to maximum allowed power
IF (rPower > rMaxBattPower) THEN
_rPowerInternal := rMaxBattPower;
END_IF
IF (rPower < -rMaxBattPower) THEN
_rPowerInternal := -rMaxBattPower;
END_IF
HandleHeartbeat();
HandleCyclicData();
CASE _iState OF
0: // Pre-init phase (no battery limits set)
_fbTONSetBatteryLimits(IN := TRUE);
IF _fbTONSetBatteryLimits.Q THEN
_fbTONSetBatteryLimits(IN := FALSE);
_eRequestedState := OFF;
_iStateStartup := 0;
_iState := 10;
END_IF
10: // Try to set battery limits
SetBatteryLimits();
IF (NOT _xStartupBusy) THEN
// Battery limits set and no error
IF _xBatteryLimitsSet AND (NOT _xErrorSetBatteryLimits) THEN
_iWSetPct := 0;
_iState := 20;
END_IF
// If there was an error settings the battery limits, retry
IF _xErrorSetBatteryLimits THEN
_iState := 0;
END_IF
END_IF
20: // Read max power scaling
_fbReadRegisters(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX_SF,
cbLength:= SIZEOF(_iWMaxSF),
pDestAddr:= ADR(_iWMaxSF),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegisters.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegisters.bError THEN
_iState := 30;
// Check for valid value
IF (_iWMaxSF < -10) OR (_iWMaxSF > 10) OR (_iWMaxSF = 16#8000) THEN
// Goto error state
_iState := 1000;
END_IF
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegisters(bExecute := FALSE);
END_IF
30: // Read max power
_fbReadRegisters(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= W_MAX,
cbLength:= SIZEOF(_uiWMax),
pDestAddr:= ADR(_uiWMax),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegisters.bBusy THEN
// If there was no error then continue
IF NOT _fbReadRegisters.bError THEN
_iState := 40;
// Calculate WMax
// Reading a register with scaling factor = value * 10^SF
_rWMax := LREAL_TO_REAL(_uiWMax * EXPT(10,_iWMaxSF));
ELSE
xError := TRUE;
// Goto error state
_iState := 1000;
END_IF
_fbReadRegisters(bExecute := FALSE);
END_IF
40: // Idle state, wait for enable
// If enable and INTLK Ok
IF xEnable THEN
_eRequestedState := GRID_CONNECTED;
IF xReleasePower THEN
// Calculate power to write to register
// (could not find where the scaling for wset can be read but its -2!)
// => 10% = 1000
// Writing a register with scaling factor = value / (10^SF)
//_iWSetPct := LREAL_TO_INT((_rPowerInternal*100)/(_rWMax * EXPT(10,-2)));
_iWSetPct := REAL_TO_INT((_rPowerInternal*100) / (_rWMax * EXPT(10,_iWSetPctSF)));
ELSE
_iWSetPct := 0;
END_IF
ELSE
_eRequestedState := OFF;
_iWSetPct := 0;
END_IF
// Comm error or Watchdog error occured
IF _xErrorCyclicData OR (NOT xHeartbeatOk) THEN
_iWSetPct := 0;
_eRequestedState := OFF;
_iState := 1000;
END_IF
// Dont set inverter into off state when an internal error occured
// because this will reset the error message
IF _xErrorInverter THEN
_iWSetPct := 0;
_iState := 1000;
END_IF
1000: // Error state
xError := TRUE;
_iState := 1001;
1001: // Error state, wait for reset
IF xReset AND (NOT xEnable) AND (NOT _xErrorCyclicData) AND (NOT _xErrorInverter) THEN
_eRequestedState := OFF;
xError := FALSE;
_iState := 0;
END_IF
END_CASE
// ===============================
// Inverter alarm handling
// ===============================
IF xError AND (NOT _fbErrorInverterAlarm.bRaised) THEN
_fbErrorInverterAlarm.Raise(0);
END_IF
IF (NOT xError) AND _fbErrorInverterAlarm.bRaised THEN
_fbErrorInverterAlarm.Clear(0, FALSE);
END_IF
IF (_fbErrorInverterAlarm.eConfirmationState = TcEventConfirmationState.WaitForConfirmation) AND xReset THEN
_fbErrorInverterAlarm.Confirm(0);
END_IF]]></ST>
</Implementation>
<Method Name="FB_Init" Id="{5f7291f3-1517-49b9-b6a8-07debcc66730}">
<Declaration><![CDATA[//FB_Init ist immer implizit verfügbar und wird primär für die Initialisierung verwendet.
//Der Rückgabewert wird nicht ausgewertet. Für gezielte Einflussnahme können Sie
//die Methoden explizit deklarieren und darin mit dem Standard-Initialisierungscode
//zusätzlichen Code bereitstellen. Sie können den Rückgabewert auswerten.
METHOD FB_Init: BOOL
VAR_INPUT
bInitRetains: BOOL; // TRUE: Die Retain-Variablen werden initialisiert (Reset warm / Reset kalt)
bInCopyCode: BOOL; // TRUE: Die Instanz wird danach in den Kopiercode kopiert (Online-Change)
sName : STRING;
END_VAR]]></Declaration>
<Implementation>
<ST><![CDATA[_sName := sName;
// Create inverter main alarm
_fbErrorInverterAlarm.CreateEx(stEventEntry := TC_EVENTS.Inverter.InverterError, bWithConfirmation := TRUE, 0);
_fbErrorInverterAlarm.ipArguments.Clear().AddString(_sName);]]></ST>
</Implementation>
</Method>
<Action Name="HandleCyclicData" Id="{4343583a-b80a-437e-8fc8-9963ab894fbc}">
<Implementation>
<ST><![CDATA[// Reset error flags on reset command
IF _xErrorCyclicData AND xReset THEN
_xErrorCyclicData := FALSE;
END_IF
// Fetch cyclic data with polling timer
_tonPollingTimer(IN := TRUE);
// Write requested state
_fbWriteRequestedState(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01,
nMBAddr:= REQUESTED_STATE_REGISTER,
nValue:= INT_TO_WORD(_eRequestedState),
bExecute:= _tonPollingTimer.Q AND (NOT _fbWriteRequestedState.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> );
IF (NOT _fbWriteRequestedState.bBusy) AND _fbWriteRequestedState.bError THEN
_xErrorCyclicData := TRUE;
END_IF
// Write current power command
_fbWritePowerCommand(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01,
nQuantity := 1,
nMBAddr:= W_SET_PCT,
cbLength := SIZEOF(_iWSetPct),
pSrcAddr:= ADR(_iWSetPct),
bExecute:= _tonPollingTimer.Q AND (NOT _fbWritePowerCommand.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> );
IF (NOT _fbWritePowerCommand.bBusy) AND _fbWritePowerCommand.bError THEN
_xErrorCyclicData := TRUE;
END_IF
// Read current state
_fbReadCurrentState(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01,
nQuantity:= 1,
nMBAddr:= CURRENT_STATE_REGISTER,
cbLength:= SIZEOF(_eCurrentState),
pDestAddr:= ADR(_eCurrentState),
bExecute:= _tonPollingTimer.Q AND (NOT _fbReadCurrentState.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
IF (NOT _fbReadCurrentState.bBusy) AND _fbReadCurrentState.bError THEN
_xErrorCyclicData := TRUE;
END_IF
IF _eCurrentState = E_KACO_CURRENT_STATE.GRID_CONNECTED OR _eCurrentState = E_KACO_CURRENT_STATE.THROTTLED THEN
xActive := TRUE;
ELSE
xActive := FALSE;
END_IF
// Read current pcu status
_fbReadPCUState(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01,
nQuantity:= 2,
nMBAddr:= PCU_STATUS_START_REGISTER,
cbLength:= SIZEOF(_stPCUState),
pDestAddr:= ADR(_stPCUState),
bExecute:= _tonPollingTimer.Q AND (NOT _fbReadPCUState.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
IF (NOT _fbReadPCUState.bBusy) AND _fbReadPCUState.bError THEN
_xErrorCyclicData := TRUE;
END_IF
IF (_stPCUState.ePCUState = E_KACO_PCU_STATE.ERROR) OR (_stPCUState.ePCUError <> E_KACO_PCU_ERROR.NO_EVENT) THEN
_xErrorInverter := TRUE;
ELSE
_xErrorInverter := FALSE;
END_IF
// Read current dc values
_fbReadDCValues(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 6,
nMBAddr:= DC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentDCValues),
pDestAddr:= ADR(_awCurrentDCValues),
bExecute:= _tonPollingTimer.Q AND (NOT _fbReadDCValues.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading modbus register is done
IF (NOT _fbReadDCValues.bBusy) THEN
// If there was no error and the converter has no error continue
IF (NOT _fbReadDCValues.bError) THEN
stCurrentValues.rActDCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[1])));
stCurrentValues.rActDCVoltage := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentDCValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[3])));
stCurrentValues.rActDCPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentDCValues[4]) * EXPT(10,WORD_TO_INT(_awCurrentDCValues[5])));
ELSE
// Dont throw comm error here because this is just
// informational data and not process critical
stCurrentValues.rActDCCurrent := 0.0;
stCurrentValues.rActDCVoltage := 0.0;
stCurrentValues.rActDCPower := 0.0;
END_IF
END_IF
// Read current ac values
_fbReadACValues(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01, // 16#FF for Modbus TCP
nQuantity:= 22,
nMBAddr:= AC_VALUES_START_REGISTER,
cbLength:= SIZEOF(_awCurrentACValues),
pDestAddr:= ADR(_awCurrentACValues),
bExecute:= _tonPollingTimer.Q AND (NOT _fbReadACValues.bBusy),
tTimeout:= _tTimeoutPolling,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF (NOT _fbReadACValues.bBusy) THEN
// If there was no error and the converter has no error continue
IF (NOT _fbReadACValues.bError) THEN
stCurrentValues.rActACCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[0]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseACurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[1]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseBCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[2]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActtACPhaseCCurrent := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[3]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[4])));
stCurrentValues.rActACPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[12]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[13])));
stCurrentValues.rActACFreq := LREAL_TO_REAL(WORD_TO_UINT(_awCurrentACValues[14]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[15])));
stCurrentValues.rActApparentPower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[16]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[17])));
stCurrentValues.rActReactivePower := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[18]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[19])));
stCurrentValues.rActPowerFactor := LREAL_TO_REAL(WORD_TO_INT(_awCurrentACValues[20]) * EXPT(10,WORD_TO_INT(_awCurrentACValues[21])));
ELSE
// Dont throw comm error here because this is just
// informational data and not process critical
stCurrentValues.rActACCurrent := 0.0;
stCurrentValues.rActtACPhaseACurrent := 0.0;
stCurrentValues.rActtACPhaseBCurrent := 0.0;
stCurrentValues.rActtACPhaseCCurrent := 0.0;
stCurrentValues.rActACPower := 0.0;
stCurrentValues.rActACFreq := 0.0;
stCurrentValues.rActApparentPower := 0.0;
stCurrentValues.rActReactivePower := 0.0;
stCurrentValues.rActPowerFactor := 0.0;
END_IF
END_IF
// Reset polling timer
IF _tonPollingTimer.Q THEN
_tonPollingTimer(IN := FALSE);
END_IF]]></ST>
</Implementation>
</Action>
<Action Name="HandleHeartbeat" Id="{eeb5f65a-fd91-4c22-ab2e-3080c24e87fb}">
<Implementation>
<ST><![CDATA[// Reset hearbeat signal only with reset signal
IF (NOT xHeartbeatOk) AND xReset THEN
xHeartbeatOk := TRUE;
END_IF
// Self resetting watchdog timer
_tonWatchdogResetTimer(IN := TRUE);
// Timeout should be less than timer interval
_fbWriteHearbeatRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#01,
nMBAddr:= WATCHDOG_REGISTER,
nValue:= _uiWatchdogTimeoutSeconds,
bExecute:= _tonWatchdogResetTimer.Q AND (NOT _fbWriteHearbeatRegister.bBusy),
tTimeout:= _tTimeoutWriteWatchdogRegister,
bBusy=> ,
bError=> ,
nErrId=> );
// Because there is no heartbeat register to read,
// we will use a successfull write as a valid heartbeat signal
IF _fbWriteHearbeatRegister.bError THEN
xHeartbeatOk := FALSE;
xError := TRUE;
END_IF
// Reset timer
IF _tonWatchdogResetTimer.Q THEN
_tonWatchdogResetTimer(IN := FALSE);
END_IF]]></ST>
</Implementation>
</Action>
<Property Name="Name" Id="{1af22804-e4c4-4295-b5b9-5968e747d45b}">
<Declaration><![CDATA[PROPERTY Name : STRING]]></Declaration>
<Get Name="Get" Id="{6338c761-e06b-4a94-a0d3-0502e3ee997d}">
<Declaration><![CDATA[VAR
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[Name := _sName;]]></ST>
</Implementation>
</Get>
<Set Name="Set" Id="{eebb6389-e8f3-42a9-a08a-6e1cad8f0192}">
<Declaration><![CDATA[VAR
END_VAR
]]></Declaration>
<Implementation>
<ST><![CDATA[_sName := Name;
_fbErrorInverterAlarm.ipArguments.Clear().AddString(_sName);]]></ST>
</Implementation>
</Set>
</Property>
<Action Name="SetBatteryLimits" Id="{15c86a66-2f5b-42ab-82c5-3aeebcab0e43}">
<Implementation>
<ST><![CDATA[CASE _iStateStartup OF
0: // Start
_xBatteryLimitsSet := FALSE;
_xErrorSetBatteryLimits := FALSE;
_xStartupBusy := TRUE;
_iStateStartup := 10;
10: // Read scaling factors
_fbReadRegisters(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 2,
nMBAddr:= BATTERY_LIMIT_SF_START,
cbLength:= SIZEOF(_arBattScalingFactors),
pDestAddr:= ADR(_arBattScalingFactors),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> ,
cbRead=> );
// Check if reading mudbus register is done
IF NOT _fbReadRegisters.bBusy THEN
IF (NOT _fbReadRegisters.bError) THEN
_iStateStartup := 20;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iStateStartup := 1000;
END_IF
_fbReadRegisters(bExecute := FALSE);
END_IF
20: // Set battery limits
_fbWriteRegisters(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 6,
nMBAddr:= BATTERY_SET_LIMITS_START,
cbLength:= SIZEOF(_auiBatteryLimitValues),
pSrcAddr:= ADR(_auiBatteryLimitValues),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegisters.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegisters.bError) THEN
_iStateStartup := 60;
ELSE
// Goto error state
_iStateStartup := 1000;
END_IF
_fbWriteRegisters(bExecute := FALSE);
END_IF
(*
20: // Set min voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MIN_V,
cbLength:= SIZEOF(uiMinDisVoltage),
pSrcAddr:= ADR(uiMinDisVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iStateStartup := 30;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iStateStartup := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
30: // Set max voltage
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_V,
cbLength:= SIZEOF(uiMaxChaVoltage),
pSrcAddr:= ADR(uiMaxChaVoltage),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iStateStartup := 40;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iStateStartup := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
40: // Set charge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= CHA_MAX_A,
cbLength:= SIZEOF(uiMaxChaCurrent),
pSrcAddr:= ADR(uiMaxChaCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iStateStartup := 50;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iStateStartup := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
50: // Set discharge current
_fbWriteRegister(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= DIS_MAX_A,
cbLength:= SIZEOF(uiMaxDisCurrent),
pSrcAddr:= ADR(uiMaxDisCurrent),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegister.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegister.bError) THEN
_iStateStartup := 60;
ELSE
// Goto error state
_xErrorSetBatteryLimits := TRUE;
_iStateStartup := 1000;
END_IF
_fbWriteRegister(bExecute := FALSE);
END_IF
*)
60: // Enable battery limits
_fbWriteRegisters(
sIPAddr:= sInverterIPAddr,
nTCPPort:= 502,
nUnitID:= 16#FF, // 16#FF for Modbus TCP
nQuantity:= 1,
nMBAddr:= EN_LIMIT,
cbLength:= SIZEOF(_uiEnableLimit),
pSrcAddr:= ADR(_uiEnableLimit),
bExecute:= TRUE,
tTimeout:= T#5S,
bBusy=> ,
bError=> ,
nErrId=> );
// If writing modbus register is done
IF NOT _fbWriteRegisters.bBusy THEN
// And there is no error, then continue
IF (NOT _fbWriteRegisters.bError) THEN
_iStateStartup := 70;
ELSE
// Goto error state
//_xErrorSetBatteryLimits := TRUE;
_iState := 1000;
END_IF
_fbWriteRegisters(bExecute := FALSE);
END_IF
70: // Battery limits set
_xBatteryLimitsSet := TRUE;
_xStartupBusy := FALSE;
1000: // Error state
_xErrorSetBatteryLimits := TRUE;
_xBatteryLimitsSet := FALSE;
_xStartupBusy := FALSE;
END_CASE]]></ST>
</Implementation>
</Action>
</POU>
</TcPlcObject>